Evidence-based Management of Fever in Infants and Young Children

Shabnam Jain, MD, MPH
Associate Professor of Pediatrics
Director for Quality, Pediatric Emergency Medicine, Emory University,
Medical Director for Clinical Effectiveness,
Children's Healthcare of Atlanta
Sep 10, 2016
Objectives

• Discuss an evidence-based approach for managing febrile infants and young children (0-24 months) in the outpatient setting

• Review Children’s Healthcare of Atlanta fever guidelines
Why Guidelines?

• Keep up with changing evidence
 ▪ rapid changes in epidemiology
• Standardize practice – reduce variation
• Optimize testing and treatment (antibiotic stewardship/cost)

80-20 rule!
Fever in Infants and Young Children

• Very common childhood illness
• Vast majority are benign/self limited
• Some can be serious/life threatening (SBI)
 • Meningitis, bacteremia, UTI, pneumonia...
• Challenge is to distinguish the two
 • when to initiate antibiotics

Risk Stratification
Systematic approach to a febrile child

• **General Appearance:**
 – well appearing patient

• **Past history:** previously healthy
 – Separate guidelines available for sickle cell, immuno-compromised, etc

• **Age**
 – 0-28 days
 – 29-60 days
 – 2-6 months
 – >6-24 months

• **Source of Fever**
Definition of fever

- Rectal temperature of $\geq 38 \, ^\circ\text{C} \ (100.4 \, ^\circ\text{F})$

- Highest *documented* temperature at home or in ED is the degree of fever

- Temp threshold for screening may be higher
 - Under 2 months: any fever requires attention
 - >2 months: screening cut-off is higher
1. **Febrile neonate (0-28 days)**

- High risk of serious bacterial infections (SBI)
 - reduced immunity
 - localize poorly
 - maternal pathogens (E coli, GBS), listeria
- Exhibit few early signs of infection
- General appearance alone can be deceptive

Routine testing and routine treatment

Byington et al; Pantell et al, Pediatrics, July 2012
Management: 0-28 days age

Complete sepsis evaluation for any fever \((\text{temp} \geq 38 \, ^\circ \text{C})\)

- CBC/diff and blood culture
- UA and urine culture
- LP (cell count, gram stain, gluc/prt, culture)

- Chest X-ray - if resp symptoms or signs
- Stool culture - if diarrhea

- HSV screening: based on risk factors
Neonatal Herpes

- Rare: 8-60 /100 000 live births*
- Febrile neonates: 0.3-0.5%**,***
 - bacterial meningitis rates (1.3-1.6%)****

- Risk Factors
 - Recent maternal h/o herpes
 - Vesicular rash
 - Ill-appearing neonate (including hypothermia)
 - CSF pleocytosis
 - Neonatal seizures

- No risk factors:
 - 0-14 days: transaminase (ALT) >50 is risk factor

*Corey et al, NEJM 2009
**Caviness et al, J Pediatr 2008
***McGuire et al, PEC, 2012
****Long et al, PIDJ 2011
Neonatal herpes work-up

• If HSV risk factors (clinical or ALT):
 – CSF HSV PCR
 – Blood HSV PCR
 – “Surface” cultures for HSV
 • Any suspicious skin lesions
 • Eyes, nose, rectum
Management (0-28 days)

- Routine sepsis work-up (blood, urine, CSF)*
- If risk factors for HSV: send HSV tests
- Anti-infectives:
 - Ampicillin 50-100 mg/kg IV
 - Cefotaxime 50 mg/kg IV
 - Acyclovir: 20 mg/kg/dose (if HSV screening done)
- Admit to hospital

*Jain, S et al. Pediatrics, Feb 2014
Key Concepts: 0-28 days

- Temp cut-off: *Any fever* (≥38 C)
- Routine testing (complete sepsis evaluation)
- Routine admission for empiric antibiotics
2. Febrile 29-60 day old

- Risk of SBI remains, but less
 - Lower risk of perinatal infections
 - Listeria much less likely
 - HSV much less likely

- No objective criteria to reliably identify infants at high risk

- Screening tests to identify infants at low risk *

Routine testing, selective treatment (if not at low risk)

1990s: Baker, Baskin, Jeskiewicz (99% NPV for SBI)
Low Risk Criteria (29-60 days)

- Well appearance
- Previously Healthy
- No focal bacterial infection
- Labs:
 - WBC: 5-15 K
 - ABC < 1,500
 - UA < 10 WBC/hpf, no les
- CSF:
 - <10 WBC, neg gram stain
- Chest X-ray: no infiltrate
Management (29-60 days)

- Partial sepsis evaluation (CBCD/bld cx and UA/UCx)
 - Consider LP

- If work-up negative and reliable follow-up - may d/c
 - Without antibiotics
 - With Ceftriaxone 50 mg/kg (LP must be done)

- If low risk criteria not met:
 - Perform LP if not already done
 - Admit for antibiotics (Cefotaxime 50 mg/kg)
Case 1

• 6 week old felt warm to parents this morning
• Temp of 100.8 F at home
• Feeds and sleeps well
• Birth hx: NSVD, no complications
• No ill contacts
• Alert, active, good eye contact
• Rectal Temp 37.6 C, HR 150, RR 44
• Exam negative
Case 1
Evaluation

Labs?
• WBC 14.1, diff N 60%, bands 7%, L 28%
• UA normal

Does the child need an LP?
• May be omitted cautiously

Treatment?
• May discharge without antibiotics, OR
• D/c after Ceftriaxone 50 mg/kg (ensure LP done)

Disposition?
• May discharge home
• Primary care follow up in 24 hours
What about a cold/OM/UTI?

- URI does not ‘rule in’ a viral etiology*
- Neither does it ‘rule out’ an SBI
 - Same management with or w/o URI
- What about OM?
 - With fever – same management
 - No fever – forego sepsis eval with caution
 - Mask SBI
 - Difficulty if fever occurs later
- What about UTI?
 - LP and admit for antibiotics**

*Byington et al; Pediatrics 2004
**Dore-Bergeron et al, Pediatrics, 2009
**Paquette et al, PEC 2011
What about bronchiolitis?

- Recognizable viral syndrome - lower risk of SBI*
- <28 days: substantial risk of SBI
- > 28 days: SBI 1-7% with bronchiolitis VS 10-17% w/o
- UTI risk remains
- 0-28 days: full w/u, abx
- 29-60 days: Blood & urine screen (may hold LP if RSV+)
 - If starting antibiotics – need to do LP

*Greenes, PIDJ 1999; Purcell, ADC 2002
Titus, Pediatrics 2003; Levine, Pediatrics 2004
Key Concepts: 29-60 days

- Temp cut-off: *Any* fever (≥38 C)
- Routine testing, selective treatment
- Other viral source of infection - lower risk of SBI
- LP *not* mandatory
- Antibiotics *not* always necessary
- If starting antibiotics – perform LP
Systematic approach to a febrile child

• General Appearance-well appearing
• PMH-previously healthy
• Age:
 • 0-28 days
 • 29-60 days
 • 2-6 mths
 • > 6-24 mths
• Source of fever
Common sources of fever

• Viral:
 – Non-specific viral illness eg URI, AGE, flu
 – Well defined viral illness eg bronchiolitis, varicella, croup, stomatitis

• Bacterial:
 – Non-specific bacterial illness eg Otitis media
 – Well defined bacterial infection eg pneumonia, localized cellulitis, UTI
3. Febrile 2-6 month old

- Usually have benign source of fever
- At risk for occult bacteremia (Pneumococcus, HIB) and UTI
- Starting to develop immunity (innate and/or vaccinations)
- Exam more reliable but signs and symptoms not completely developed

Selective testing & selective treatment
(based on source and height of fever)
Management (2-6 mth age)

- Targeted history to determine exposures and symptoms that may suggest a source for the fever
- Thorough exam to determine findings suggesting an etiology for the fever

Many children in this age group do not need testing (depending on source and temp)
Management (2-6 months)

If no source or non-specific source and temp ≥ 39°C
• CBC diff and blood culture
• UA, Urine Cx

*CHOA Fever clinical practice guideline
Management (2-6 mth age)

- If definite/well defined source: treat etiology
- If no/non-specific source and temp < 39 °C: no blood; *urine*
- If no source or non-specific source (eg GE, URI, flu) and temp ≥ 39°C*,
 - CBC diff and blood culture
 - UA, Urine Cx
 - If WBC ≥ 20K or ANC ≥ 10K∞ -> Ceftriaxone
 - LP, additional tests (CXR, stool studies): based on clinical assessment and test results

* Browne, 1996; Lee, 1998; Kupperman, 2000* cf under 2 mth age group.
Assessment of UTI Risk*

Individual Risk Factors: Girls
- White race
- Age < 12 mo
- Temperature ≥ 39°C
- Fever ≥ 2 d
- Absence of another source of infection

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>No. of Factors Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1%</td>
<td>No more than 1</td>
</tr>
<tr>
<td>≤ 2%</td>
<td>No more than 2</td>
</tr>
</tbody>
</table>

Individual Risk Factors: Boys
- Nonblack race
- Temperature ≥ 39°C
- Fever > 24 h
- Absence of another source of infection

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>No. of Factors Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1%</td>
<td>Uncircumcised: a, Circumcised: No more than 2</td>
</tr>
<tr>
<td>≤ 2%</td>
<td>Uncircumcised: None, Circumcised: No more than 3</td>
</tr>
</tbody>
</table>

*AAP UTI Clinical Practice Guideline, Pediatrics, 2011

Probability of UTI exceeds 1% even with no risk factors.
4. Fever in >6-24 mth old

In well-appearing, previously healthy, 6-24 month old, management depends on:

• Immunization status
 – If immuniz UTD – routine blood work not needed

• Source of fever
 – If source present – routine blood work not needed

If immuniz not UTD and no source of fever and temp >39 C:
CBCD, blood cx, UTI screening as indicated
Changing approach to Fever
(>6-24 mth old)

- **Early 1990s** (H flu invasive organism, high risk of complications)
 - Conservative approach to febrile child
- **Late 1990s** (H flu gone, Pneumococcus main etiology of OB)
- **2000s**- Pneumococcal vaccine
 - PCV-7 in 2000, PCV-13 in 2010
 - Given at 2, 4, 6 months + booster
 - Highly immunogenic, 97% effective
Invasive Pneumo Disease <5 yr age

*Pilishvili et al, J Infect Dis, 2010
Pneumococcal Vaccine 13

• 13-valent Pneumococcal vaccine
• Licensed in Feb 2010
• PCV-7 covered ~80% of pneumo disease
• PCV 13 covers ~ 64% of remaining disease (including 19A)
• Kaplan, S et al (2013):
 – In 2011, invasive pneumo infections decreased
 • Overall: ↓ 42% compared to 2007-09
 • Age<24 mth: ↓ 53%
Invasive Pneumococcal infections*

In 8 children’s hospitals

*PIDJ, Mar 2013 Kaplan et al
Management (>6-24 mth age)

- Clinical exam is very helpful
- Risk of bacterial meningitis: 3/10,000
- Risk of bacteremia in FWLS: 0.25% *
- Pneumococcus usually self resolves
- UTI is most common occult bacterial infection

- **Vast majority of children in this age group do not need blood testing**
- “Benign neglect”…….”Watchful waiting”

Selective UTI screening

Wilkinson et al, Acad Emer Med, 2009
Fever >6-24 months

If immunizations not UTD and no source of fever and temp > 39 C: CBC, blood cx, UTI screening as indicated

CHOA Fever clinical practice guideline
Management (>6-24 mth age)

- If immuniz not UTD and no source of fever and temp > 39°C:
 - CBCD, blood culture
 - Ceftriaxone if WBC ≥ 20K or ANC ≥ 10K

- Other testing and treatment as clinically indicated

- UTI screening
UTI

• Pyelonephritis: most common SBI in childhood
• UTI (<8 yr of age): 7-8% girls; 2% boys
 ▪ Fever without source 2-24 mth: UTI prevalence 5%*
• Prevalence depends on:
 • Age: first year of life
 • Gender: F:M relative risk 2.27
 • Race: less in blacks
 • Circumcision: 3- to 4-fold decrease
 • Presence of other source**: reduces risk of UTI

Challenges with UTI in young infants

- Difficult diagnosis (symptoms not well developed)
- Many febrile UTIs in young children associated with pyelonephritis (34-70%)
- Recurrent untreated UTIs contribute to permanent renal scarring (risk for HTN, renal failure)
- Obtaining good specimen is not easy
- Can coexist with non-specific viral infections *

*1998, Shaw, Pediatrics
Diagnosis and Management of *Initial* UTI in febrile (>38°C) infants and children 2-24 mth

In a child with fever without source:

- Ill-appearing and abx planned: screen for UTI (UA and UC)

- Not ill appearing: assess probability of UTI
 - Low probability – f/u without testing
 - Not low probability – screen for UTI

Selective urine testing based on probability of UTI

Pediatrics Sep 2011
Probability of UTI*

Individual Risk Factors: Girls

- White race
- Age < 12 mo
- Temperature ≥ 39°C
- Fever ≥ 2 d
- Absence of another source of infection

Individual Risk Factors: Boys

- Nonblack race
- Temperature ≥ 39°C
- Fever > 24 h
- Absence of another source of infection

Probability of UTI and No. of Factors Present

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>No. of Factors Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1%</td>
<td>No more than 1</td>
</tr>
<tr>
<td>≤2%</td>
<td>No more than 2</td>
</tr>
</tbody>
</table>

Probability of UTI and No. of Factors Present (Uncircumcised vs. Circumcised)

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>Uncircumcised</th>
<th>Circumcised</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1%</td>
<td>a</td>
<td>No more than 2</td>
</tr>
<tr>
<td>≤2%</td>
<td>None</td>
<td>No more than 3</td>
</tr>
</tbody>
</table>

*a Probability of UTI exceeds 1% even with no risk factors.

AAP UTI Clinical Practice Guideline, Pediatrics, 2011
Who to Test for UTI*?

- No fixed threshold over which to test
- Threshold to test should be < 3% probability of UTI
- <1% or <2%, depending on:
 - Contact during illness
 - Comfort with diagnostic uncertainty

* AAP UTI Clinical Practice Guideline, Pediatrics, 2011
How to obtain sample?

- Option 1: catheter / suprapubic

- Option 2: bag specimen
 - if positive → catheter/suprapubic
 - if negative → monitor
UTI Treatment

- Route: Oral and parenteral equally efficacious*
- Most children can be treated orally, except:
 - Toxic
 - Unable to take orals
 - Noncompliance
- Choice of abx: based on local patterns
 - Cefprozil
- Duration: 7-14 days

*Hoberman Pediatrics 1999
Key Concepts: Fever ≥2 mth age

• Screening tests based on source and height of temp
• After 6 months of age, if immunizations UTD – blood work usually not needed
• UTI screening based on probability of UTI (# of risk factors)
Summary

Management of a well-appearing, previously healthy febrile child in ED based on:

- Age
- Immunization status
- Source of fever
- Current epidemiology
- Combination of clinical and lab criteria
- Balancing risk of disease and risk of testing/therapy
 - UTI: Risk Tolerance (MD, parent)
Management of febrile young infants

<table>
<thead>
<tr>
<th>Age</th>
<th>Blood</th>
<th>Urine</th>
<th>CSF</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-28 days</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>29-60 days</td>
<td>All</td>
<td>All</td>
<td>Many</td>
<td>Selective</td>
</tr>
<tr>
<td>2-6 months</td>
<td>Selective</td>
<td>Selective</td>
<td>Based on clinical indications</td>
<td>Based on clinical dx/results</td>
</tr>
<tr>
<td>>6-24 months</td>
<td>Few</td>
<td>Selective</td>
<td>Based on clinical indications</td>
<td>Based on clinical dx/results</td>
</tr>
<tr>
<td>>2 years</td>
<td></td>
<td></td>
<td>Based on clinical indications</td>
<td></td>
</tr>
</tbody>
</table>