LIMB LENGTH DISCREPANCIES

Jill C Flanagan, MD

OBJECTIVES

• Evaluate the patient with a possible limb length difference (LLD)
• Understand general treatment principles when managing limb length differences
• Understand indications for limb lengthening surgeries and the basic method in which they are performed

PATIENT HISTORY

• Trauma
• Infection
• Tumor
• Obvious at birth?
• Skin abnormalities
• Neuro abnormalities
• Current functional issues
• Current pain issues
PHYSICAL EXAMINATION

• Evaluate limb girth
• Evaluate skin
 – Birthmarks
 – Surgical/trauma scars
 – Dimples in limbs
 – Amniotic bands
• Count toes
• Babies –
 – Check for differences in foot size

PHYSICAL EXAMINATION

• The lower limb is made of the following segments:
 – Pelvis
 – Thigh
 – Leg
 – Foot
• Therefore, standing will provide the most accurate details

PHYSICAL EXAMINATION

• Wooden blocks or equivalent to level pelvis while standing
 – Ensure knees are straight
• Galeazzi Test
• “Reverse/Prone” Galeazzi test
• Adolescents –
 – Screen for scoliosis once pelvis is level with blocks
STANDING TEST

NO BLOCK
STANDING ON 1" BLOCK

GALEAZZI TEST

• Assess length of femur (pelvis to knee) by aligning pelvis, and then flexing knees
• Visualize the difference in knee heights

PRONE GALEAZZI TEST

• Lie patient prone on exam table
• Assess tibia and foot height be flexing knees 90 degrees, and dorsiflexing ankles to neutral position
TREATMENT PRINCIPLES

Children's Healthcare of Atlanta

GENERAL RECOMMENDATIONS FOR LLD TREATMENT

• PROJECTED DISCREPANCY:
 — < 2 cm: observation
 — Between 2 – 5 cm: contralateral epiphysiodesis
 — > 5 cm: lengthening of short limb

• But

MANAGING LLD

2 cm LLD is not the same for everyone!
CASE PRESENTATION

- CC: limb length discrepancy
- HPI: 15 month old female presents for initial consultation for evaluation of LLD, L>R
- No PMH/PSH
- Physical Exam:
 - No abnormal facies
 - No upper extremity abnormalities
 - Right lower extremity:
 - Apex anterior bowing of midshaft tibia w/ skin dimple at level of bowing
 - 4 ray foot
 - Fixed equinovalgus foot deformity
 - 20 arc of forefoot range of motion
 - Full ROM of hip and knee
 - Knee stable

INITIAL RADIOGRAPHS

CURRENT MEASUREMENTS:

<table>
<thead>
<tr>
<th></th>
<th>RIGHT</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMUR</td>
<td>15.1 cm</td>
<td>16.6 cm</td>
</tr>
<tr>
<td>TIBIA</td>
<td>9.9 cm</td>
<td>14.2 cm</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25 cm</td>
<td>30.8 cm</td>
</tr>
</tbody>
</table>

Current LLD: 5.8 cm

If current LLD is 5.8 cm, what will the difference be at skeletal maturity?
PREDICTING LLD

- Multiple ways to do this
 - Review Green-Anderson Charts
 - Mosely Straight Line Graph
 - Multiplier Method
- Easiest way is with multiplier method:
 - Must know skeletal age for all of these methods
- Prior to puberty assume skeletal age = chronological age

LOWER LIMB MULTIPLIERS

<table>
<thead>
<tr>
<th>LOWER LIMB</th>
<th>LOWER LIMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier for BOYS</td>
<td>Multiplier for GIRLS</td>
</tr>
<tr>
<td>Age [yr]</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>1.40</td>
</tr>
<tr>
<td>3</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>1.30</td>
</tr>
<tr>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td>1.15</td>
</tr>
<tr>
<td>8</td>
<td>1.10</td>
</tr>
<tr>
<td>9</td>
<td>1.05</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Quick, convenient, and accurate prediction method
- For Shapiro Type I pattern of progressive LLD
- Overall - twenty data bases were analyzed (Anderson and Green included)
 - Age and gender related multipliers were calculated
 - No significant differences were found between
 - Percentile groups
 - Femur or tibia
 - Gender
Formula for Congenital LLD

\[L_m = L_{\text{current}} \times M \]
Length at maturity = current length x multiplier

\[\Delta_m = \Delta_{\text{current}} \times M \]
Difference at maturity = current difference x multiplier

fibular hemimelia, congenital femoral deficiency, hemi-hypertrophy, etc.

BACK TO OUR PATIENT

CURRENT MEASUREMENTS:

<table>
<thead>
<tr>
<th></th>
<th>RIGHT</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMUR</td>
<td>15.1 cm</td>
<td>16.6 cm</td>
</tr>
<tr>
<td>TIBIA</td>
<td>9.9 cm</td>
<td>14.2 cm</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25 cm</td>
<td>30.8 cm</td>
</tr>
</tbody>
</table>

Current LLD: 5.8 cm
Final LLD: 5.8 x 2.75 = 15.95 cm

** HOW ARE WE GOING TO MANAGE A CHILD WITH A PREDICTED 16 CM LLD??**
WHAT SHOULD WE DO?

ABLATION
- Amputation + Prosthesis

RECONSTRUCTION
- Shorten “normal” side
- Lengthen short side
- Combination of the two
 - Shorten the long bone + lengthen the short bone

WHAT INFORMATION IS IMPORTANT TO HELP MAKE THIS DECISION?

- Understand your treatment goals
 - Maximize function
 - Minimize pain
 - Near equal limb lengths at maturity
- Have an idea of how much LLD there will be at maturity
 - 16 cm
- Is the patient a candidate for lengthening?
 - What are indications/contraindications to lengthening?

INDICATIONS/CONTRAINDICATIONS TO LENGTHENING

WHAT YOU NEED
- Stable joints/Full ROM
- Good support system
 - Medical
 - Familial
- “Reasonable” amount of length to achieve

WHAT YOU SHOULD NOT HAVE
- Neurologic disease
- Bad joints
- Bad bones
WHAT SHOULD WE DO?

Options for Management Include:

- Amputation + Prosthesis
- Shorten
- Lengthen
- Combination of the two
 - Shorten the long bone
 - Lengthen the short bone

Either one... but it would take 3 lengthenings to make up a 16 cm difference.

MANAGING LLD

Not every patient is a lengthening candidate.

WHEN TO LENGTHEN A LIMB
INDICATIONS FOR LIMB LENGTHENING AND RECONSTRUCTION

- GOOD PARENTS (FAMILY/SUPPORT)
- GOOD JOINTS
- GOOD BONES

INDICATIONS FOR RECONSTRUCTION:
“Good Parents”

- Lengthening is a childhood-long commitment
- Non-active lengthening stage
 - Bracing/lifts
 - Possibly PT
- Active lengthening
 - Reliable to take to weekly appointments (some live hours away)
 - Physical therapy – 3-4 times per week
 - Educated to perform lengthening daily
 - Administer medications
 - Good communication skills
 - Financial support

INDICATIONS FOR RECONSTRUCTION:
“Good Joints”
INDICATIONS FOR RECONSTRUCTION:

"Good Bones"

<table>
<thead>
<tr>
<th>GOOD BONES</th>
<th>"NEEDS WORK" BONES</th>
<th>BAD BONES</th>
</tr>
</thead>
</table>

LENGTHENING CONSIDERATIONS

- The longer the lengthening, the more complications
 - Possible "prep" surgery prior to or during lengthening
 - Pin tract infections
 - Bone infections
 - Joint stiffness
 - Fracture of regenerate (new bone)
 - Joint dislocation
- Typically can lengthen the limb by 20%

HOW TO LENGTHEN A LIMB
CASE PRESENTATION

• 15 yr old female had suffered a fracture of her distal femoral physis at age 7
• While in India, she had a bar resection, which did enable her bone to grow
• But at skeletal maturity, her femur is crooked (varus) and remains 6 cm short

TREATMENT RECOMMENDATIONS

• Recommended a limb lengthening surgery with an acute deformity correction

HOW TO LENGTHEN A BONE

• Cut the bone
 – Low energy corticotomy
 – No saw
• Apply some type of daily “stretching” apparatus
 – external fixator
 – internal lengthening nail
• Lengthen at a very specific rate
 – Typically start at 1mm/day
 – May speed up or slow down depending on a multitude of factors
This child had Blount's disease at a young age. The tethering plate failed, and therefore, his growth area was surgically disrupted, and his deformity was corrected and over-lengthened.
16 yr old male had a history of osteomyelitis of his right distal femur at age 11. Now skeletally mature, he has a 5 cm LLD. His limb was lengthened using the internal lengthening nail.

THANKS!!!
jflanagan@childrensortho.com