Cerebral Palsy in the Hand & Upper Extremity

Allan Peljovich, MD, MPH
Director, Hand & Upper Extremity Program,
Children’s Healthcare of Atlanta;
Pediatric Hand & Upper Extremity Center of Georgia;
Atlanta Medical Center Orthopedic Residency Program

The Natural History of the CP Hand

• Most with independent hand use (55%)
• Some with real impairments (30%)
• ≈15% with no hand function

Lawson & Badawi, 2003

What can a hand surgeon do for affected children?

• Improve function
 – ADL’s
• Aid caregivers
 – Hygiene and care
• Improve cosmesis
 – i.e., an independent, teenager with a hyperflexed wrist

We are going to review…

- Evaluation of the hand in CP
 - History & examination pearls
 - Tests and studies to aid in the assessment
- Initiating treatment for the hand in CP
 - Evidence-based non-operative treatment
- The role of surgery for the hand in CP
 - Who, when and what

Evaluating Children with CP

History Pearls

- How is the arm/hand currently used?
 - Is there upper extremity neglect?
 - What is the level of functioning?
- Are hopes & expectations realistic?
- Will the child complete treatment?
 - Support & resources
 - Motivation
 - Child, parents and/or caretakers
 - Cognitive level
 - Age-appropriate education level?

Evaluating Children with CP

Examination Pearls

- Systems to evaluate
 - Skin
 - Musculoskeletal
 - Neurological
 - Psych

Waters & Van Heest, 1998
Evaluating Children with CP

Neurological Exam Pearls

- **Motor**
 - Movement is absent
 - CNS paralysis vs. control?
 - Movement is present
 - Synkinesis (57%)
 - Mirroring (40%)
 - Co-contraction

- **Sensation**
 - Peripheral sensation impaired in > 40%
 - Central sensation
 - Stereognosis (36%)
 - Graphesthesia (47%)
 - Proprioception (19%)

Waters & Van Heest, 1998; Kazin & Zlotolow

Evaluating Children with CP with adjunctive studies - *What ifs?*

- Particularly useful in evaluating the ‘functional’ hand
- What if the spastic muscles weren’t?
 - **Local anesthetic blockade**
 - Into the biceps m. to assess elbow flexor spasticity
 - Median n. & ulnar n.
 - At the wrist to assess intrinsic spasticity
 - At the elbow to assess extrinsic flexor spasticity
 - **Botulinum toxin A**
 - Blocks muscles instead of nerves
 - More precise and longer acting than motor block
 - Helpful to coordinate with physiotherapy

Pierson, 1996; Van Heest 2003; Weigl, et al, 2007

Evaluating Children with CP

Drawing Conclusions

- Does the objective picture match the current level of function?
- Are the goals reasonable and achievable?
- Arriving at a final assessment requires effort
 - Multiple visits and examinations
 - Video is an excellent tool to evaluate the child in their ‘normal’ environment

Treating affected children with CP

Physiotherapy – the latest

- Functional training
 - Teach bimanual activities
 - Task-specific goals
 - Application of adaptive devices
 - Better than ‘traditional’ therapy
- Constraint therapy
 - Hemiplegia
 - ‘Dosage’ matters

Clostridium Botulinum A – the latest

- Series of patient oriented injections improve function regardless of OT regimen
- Combination of injection and functional therapy
 - Botulinum improves mobility
 - Functional therapy improves strength
- Requires continued treatment

Surgery in the treatment of CP

- A reduction in impairment will *improve function*
 - Increasing range of motion is not enough
- Improved posturing will *ease the care of the limb*
 - Or, improve skin hygiene
- When it will *improve the child’s self-image*
- Surgical treatment, when indicated, is superior to botulinum and therapy!!
 - It has the added value of being permanent

Improving Function with Surgery

Principle
- Create joint 'balance'
 - Active ROM > strength
- Eliminating spasticity is not the goal
 - Task completion not associated with muscle tone

Method
1. Weaken the strong side
 - Lengthen spastic muscles
 - Titrate to need
2. Strengthen the weak side
 - Tendon transfer
3. Stabilize unstable joints

Improving Function with Surgery

Part 2

- The upper arm is the **crane**
 - Shoulder
 - Elbow
- The hand is the **tool**
 - Forearm rotates
 - Wrist adjusts
 - Fingers grab
 - Thumb pinches

Treating affected children with CP

Weakening the strong side

- Lengthen spastic muscles
 - Mild-moderate length
 - Fractional lengthening
 - 1 – 3cm lengthening
 - Best for mobile joints
 - Active, weak antagonists
 - Easy to rehabilitate
 - Release the muscle’s origination point
 - ‘Slide’
 - Moderate to large length
 - Z-lengthen
 - ‘Slide’

Tendon transfer data

Treating affected children with CP
Weakening the strong side - Flexor Pronator ‘Slide’

Case Example
Elbow flexion, Wrist flexion, Fist
Treating affected children with CP
Strengthening the weak side

• If antagonist muscle is working...
 – Weakening/lengthening the spastic muscles may be enough
 – Tendon transfer
 • Avoid using a ‘spastic’ donor
 • Donor muscle does not change ‘phase’ in CP
 – Synergistic transfers become important

Patterson, et al., 2010; Van Heest, et al., 2010

Treating affected children with CP
Strengthening the weak side

• Forearm Pronation contracture
 – Weaken spastic side
 • Pronator teres (PT) release
 – Strengthen weak side
 • If supinator active...
 – Surgery complete
 • If supinator inactive...
 – PT rerouting transfer

• Results
 – Supination 65° actively
 – Static posturing to near neutral

Case Example: Hemiplegia

• Teenage male with left sided hemiplegia
 – Pronation spasticity
 – Thumb-in-palm deformity

Children's Healthcare of Atlanta
Severe contractures in CP

• The severely affected child
• Deformities exceed limitations of ‘functional techniques’
 – Cannot lengthen enough
 – Tendon transfers contraindicated
• Requires different tools
 – Surgery is permanent, so treatment goals must be clear

Severe contractures in CP

Elbow Flexion

• Extensive lengthenings
 – Consider complete myotomy
 – Account for skin contracture
• Musculocutaneous neurectomy
 – In absence of severe myostatic contracture

Severe contractures in CP

Wrist flexion

• Indications
 – Cosmesis!!!
 • Pre-teens and teens
 • Skin problems

• Arthrodesis
 – Proximal row carpectomy
 • Helps avoid need for simultaneous release of extrinsic finger flexors
 – Avoid physis (remove plate later)
• Can be combined with other procedures addressing fingers

Hoffer & Zeitzew, 1988; Rayan & Young 1999; Van Heest & Strothman, 2009
Severe contractures in CP

Intrinsic Spasticity

- May be hidden within extrinsic contractures
- There are too many muscles to treat
- Motor neurectomy
 - Ulnar motor branch
 - Median motor branch

Case Example: Hemiplegia

- Young adult with hemiplegia
 - Wrist extension spasticity
 - Intrinsic spasticity
- Treatment
 - Wrist extension spasticity
 - ‘Slide’
 - Intrinsic spasticity
 - Neurectomies

Thank You